生物表面活性剂促进有机污染物降解的作用机理、其与降解菌株及底物的相互作用关系都还不甚清楚。虽然生物表面活性剂促进了微生物降解,但它们也有一些抑制因素,如有些表面活性剂浓度达到CMC以上时就对微生物有毒性,有些生物表面活性剂的胶粒能干扰细胞过程。生物表面活性剂也能作为一种优先碳源,与有机污染物的降解形成竞争,从而导致污染物降解率下降。此外表面活性剂还可能造成微生物数量的分散而导致不同的结果。这些作用机理都需要深入探究。
发酵法生产生物表面活性剂的优点在于生产费用低、种类多样和工艺简便等,便于大规模工业化生产,但产物的分离纯化成本较高。
与微生物发酵法相比,酶法合成的表面活性剂分子多是一些结构相对简单的分子,但同样具有优良的表面活性。其优点在于产物的提取费用低、次级结构改良方便、容易提纯以及固定化酶可重复使用等,且酶法合成的表面活性剂可用于生产高附加值产品,如药品组分。尽管现阶段酶制剂成本较高,但通过基因工程技术增强酶的稳定性与活性,有望降低其生产成本。
许多化学合成表面活性剂由于难降解、有毒及在生态系统中的积累等性质而破坏生态环境,相比之下,生物表面活性剂则由于易生物降解、对生态环境无毒等特性而更适合于环境工程中污染治理。如:在废水处理工艺中可作为浮选捕收剂与带电胶粒相吸以除去有毒金属离子,修复受有机物和重金属污染的场地等。
采用发酵法生产时,生物表面活性剂的种类、产量主要取决于生产菌的种类、生长阶段,碳基质的性质,培养基中N、P 和金属离子Mg2+、Fe2+的浓度以及培养条件(pH、温度、搅拌速度等)。 如Davis等在成批培养枯草芽孢杆菌时发现,在溶解氧耗尽和限氮条件下可得zui大浓度(439.0 mg/L)的莎梵婷。Kitamoto等利用南极假丝酵母的休止细胞生产甘露糖赤藓糖醇脂,对培养条件进行优化后,zui高产量可达140 g/L。